A new discrete electromagnetism-based meta-heuristic for solving the multidimensional knapsack problem using genetic operators
نویسندگان
چکیده
The Standard Electromagnetism-like Mechanism (SEM) is one of the swarm-based optimization methods which is examined in this paper. The SEM works based on the charges in electrons and hence its operators have been especially designed for continuous space problems. Although the SEM was successfully applied to the standard optimization problems, it was not that notable when it came to tackling discrete space problems. This shortcoming was obvious when the SEM was applied to some standard discrete problems such as Travelling Salesman Problem, Nurse Scheduling Problem, etc. In this paper, a modified SEM called Discrete Electromagnetism-like Mechanism is proposed which utilizes Genetic Algorithm (GA) operators to work in discrete spaces. In fact, the vector calculations (which are at the heart of the SEM) in the SEM are replaced by specific types of GA operators to determine the effects that particles have on one another. Also, a new operator based on the principles of quantum mechanics is proposed which further improves the performance of the method. In our experiments, the proposed algorithm is applied to a well-studied discrete space problem called Multidimensional Knapsack Problem (MKP). All tests are done on standard problems of the MKP and the results are reported and compared with several stochastic population-based optimization methods. Experiments showed that the proposed algorithm not only found comparable (and even better in some cases) solutions for the standard problems of the MKP, but also took much less computational time (75% improvement in average in comparison to other methods). M. R. Bonyadi (&) Shahid Beheshti University, Tehran, Iran e-mail: [email protected]; [email protected]; [email protected] X. Li RMIT University, Melbourne, VIC, Australia e-mail: [email protected] 123 Oper Res Int J DOI 10.1007/s12351-010-0084-0
منابع مشابه
Centre Of Mass Selection Operator Based Meta-Heuristic For Unbounded Knapsack Problem
In this paper a new Genetic Algorithm based on a heuristic operator and Centre of Mass selection operator (CMGA) is designed for the unbounded knapsack problem(UKP), which is NP-Hard combinatorial optimization problem. The proposed genetic algorithm is based on a heuristic operator, which utilizes problem specific knowledge. This center of mass operator when combined with other Genetic Operator...
متن کاملA discrete-event optimization framework for mixed-speed train timetabling problem
Railway scheduling is a complex task of rail operators that involves the generation of a conflict-free train timetable. This paper presents a discrete-event simulation-based optimization approach for solving the train timetabling problem to minimize total weighted unplanned stop time in a hybrid single and double track railway networks. The designed simulation model is used as a platform for ge...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملAn Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ
An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...
متن کاملA Fuzzy Genetic Algorithm Based on Binary Encoding for Solving Multidimensional Knapsack Problems
The fundamental problem in genetic algorithms is premature convergence, and it is strongly related to the loss of genetic diversity of the population. This study aims at proposing some techniques to tackle the premature convergence by controlling the population diversity. Firstly, a sexual selection mechanism which utilizes the mate chromosome during selection is used. The second technique focu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Operational Research
دوره 12 شماره
صفحات -
تاریخ انتشار 2012